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Abstract A simple mathematical model of fluid flow in a common type of scraped-surface heat exchanger
in which the gaps between the blades and the device walls are narrow, so that a lubrication-theory descrip-
tion of the flow is valid, is presented. Specifically steady isothermal flow of a Newtonian fluid around
a periodic array of pivoted scraper blades in a channel with one stationary and one moving wall, when
there is an applied pressure gradient in a direction perpendicular to the wall motion, is analysed. The flow
is three-dimensional, but decomposes naturally into a two-dimensional “transverse” flow driven by the
boundary motion and a “longitudinal” pressure-driven flow. First details of the structure of the transverse
flow are derived, and, in particular, the equilibrium positions of the blades are calculated. It is shown that
the desired contact between blades and the moving wall will be attained, provided that the blades are
pivoted sufficiently close to their ends. When the desired contact is achieved, the model predicts that the
forces and torques on the blades are singular, and so the model is generalised to include three additional
physical effects, namely non-Newtonian power-law behaviour, slip at rigid boundaries, and cavitation in
regions of very low pressure, each of which is shown to resolve these singularities. Lastly the nature of the
longitudinal flow is discussed.

Keywords Lubrication theory · Scraped-surface heat exchanger

1 Introduction

Scraped-surface heat exchangers (SSHEs) are widely used in the food industry to cook, chill, crystallise
or sterilise certain foodstuffs quickly and efficiently without causing unwanted changes to the constitution,
texture and appearance of the final product. A SSHE is essentially a cylindrical steel annulus whose outer
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Fig. 1 Cutaway sketch of
a four-bladed
scraped-surface heat
exchanger (SSHE)
(Based on a figure
provided to us by Tetra
Pak and reproduced here
with permission.)

wall is heated or cooled externally; the foodstuff is driven slowly by an axial pressure gradient along the
annulus, and a “bank” of blades rotating with the inner wall (the “rotor”) is used to scrape it away from
the outer wall (the “stator”), preventing fouling, and maintaining mixing and heat transfer. In the mixing
process the transverse flow is more significant than the axial flow. The blades typically are arranged in
groups of two (180◦ apart) or four (90◦ apart); sometimes pairs of blades are “staggered” axially. Figure 1
shows a “cutaway” sketch of a four-bladed SSHE (albeit with a somewhat wider gap between the rotor
and stator than the type for which the present mathematical model is valid) which illustrates the general
geometry of the device. Sometimes the blades are manufactured with holes in them; the holes allow mass
flow through the blades, reducing the power required for rotation.

There are several types of SSHE in use; we shall be concerned with the type that is used for very viscous
foodstuffs such as purées, sauces, margarines, jams, spreads, soups, baby-foods, chocolate, mayonnaise,
caramel, fudge, ice-cream, cream and yoghurt. In this common type of SSHE the gaps between the blades
and both the stator and the rotor are slender, as are the gaps between the stator and the rotor away from
the blades.

Foodstuffs commonly behave as non-Newtonian materials, typically being shear-thinning, viscoplastic
and/or viscoelastic, as well as being inhomogeneous, and possibly undergoing phase changes; also they
often have a strongly temperature-dependent viscosity. Moreover, both convection and dissipation of heat
can be significant in a SSHE. These factors, coupled with the fact that the geometry is complicated, mean
that the processes that take place inside SSHEs are complex: operating conditions vary with context, and
operators are guided largely by experience and correlations. Thus, despite their widespread use, under-
standing of the behaviour of the material inside SSHEs is still incomplete; features of the behaviour have
been analysed recently by, for example, Stranzinger et al. [1], Fitt and Please [2] and Sun et al. [3], and
experimental work on SSHEs has been done by, for example, Härröd [4], Wang et al. [5] and Rodruiguez
[6]. Extensive literature surveys are given by Härröd [4,7], Rodruiguez [6], and Rao and Hartel [8].

The present work forms part of a larger research project on SSHEs involving an interdisciplinary team
of academics and industrialists (see [9] for a brief general overview of the project). Specifically, in this
paper we present a simple mathematical model of the fluid flow in a SSHE. Since the various gaps in
a SSHE of the type considered are slender (the aspect ratios being of order 10−1 and the appropriate
reduced Reynolds number being of order 10−2) the “lubrication approximation” may be used to analyse
the flow (see [2,10] for details). Neglect of inertia means that a Galilean shift may be performed on the
system, so that the blade and upper wall (rotor) are brought to rest, and it is the lower wall (stator) that
moves. Thus, we consider steady flow of a viscous fluid around a freely pivoted scraper blade in a periodic
array of blades inside a channel with one stationary wall and one moving wall, when there is an applied
pressure gradient in a direction perpendicular to the wall motion. The flow is fully three-dimensional,
but decomposes naturally into a two-dimensional “transverse” flow driven by the boundary motion and
a “longitudinal” pressure-driven flow; for simplicity of presentation these two ingredients are examined
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Fig. 2 Geometry of the model problem treated in this paper, namely a periodic array of scraper blades in a channel with one
stationary wall and one moving wall. The dots signify the positions of the blade pivots

separately. In Sect. 2 we suppose that the blade does not make contact with a wall of the channel, whereas
in Sect. 3 we suppose that it does. Finally, in Sect. 4 the nature of the longitudinal flow is discussed.

Despite the fact that non-Newtonian flow effects can be significant in a real SSHE, in this study we
largely restrict attention to the case of a Newtonian fluid; moreover, we are concerned only with the fluid
flow in the channel, not the heat transfer, and so we consider only isothermal flow. However, even with
these simplifications, the simple model presented herein contributes useful insight into the flow inside a
SSHE and provides a basis for subsequent studies of more complicated physical effects. For example, in a
companion paper Fitt et al. [10] use the approach of Fitt and Please [2] and the present work to consider
heat flow in a SSHE and, in particular, the possibility of “channelling”, the practically very undesirable
situation in which material passes through the device without experiencing significant heating or cooling.

An approach of the type used in the present paper may also be useful in analysing other “confined” flows
with a narrow geometry involving a pivoted blade or flap that is in contact or near contact with a bounding
wall; examples include flap actuators in micro-electro-mechanical systems [11,12], prosthetic heart valves
[13], agitators and screw extruders, with, for example, spiral impellers and/or baffles [14, Sect. 3.14], and
hairs inside the cochlea or semi-circular canal of the ear.

2 Two-dimensional flow in a channel with a periodic array of blades

2.1 Formulation

First we consider steady two-dimensional (transverse) flow of an isothermal incompressible Newtonian
fluid of viscosity µ in a long parallel-sided channel of width H in which there is a periodic array of inclined
smoothly pivoted thin plane blades, the flow being driven by the motion of one wall of the channel parallel
to itself with speed U (>0), the other wall being fixed. In practice, SSHEs are often mounted vertically,
and so we shall ignore the effect of gravity on the transverse flow.

We introduce Cartesian axes Oxyz as shown in Fig. 2, with the wall y = 0 moving with velocity Ui,
and the wall y = H fixed. Suppose a thin plane freely pivoted blade occupies 0 ≤ x ≤ L, with its pivot
fixed at (xp, hp), where 0 ≤ xp ≤ L and 0 < hp < H � L, and suppose that the separation between the
blades is � (≥0), so that the portion L ≤ x ≤ L + � of the channel contains no blades. This configuration
is repeated periodically, with period L + �; in the following we shall refer the description to the interval
0 ≤ x ≤ L + �. In terms of the SSHE, the width H, period L + � and speed U are defined by H = R2 − R1,
L + � = 2πR1/N and U = R1ω, where R1 and R2 are the radii of the rotor and stator, N is the number
of blades in a cross-section of the SSHE, and ω is the angular speed of the rotor. The limit �/L → ∞
corresponds to the case of a single blade in a channel (and the limit H/hp → ∞ of this case corresponds
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to the “rocker bearing” in classical lubrication theory, studied extensively by, for example, Raimondi and
Boyd [15,16]).

Let α (which may be positive or negative) denote the angle of inclination of the blade to the x-axis, as
shown in Fig. 2. In the lubrication-theory approach used here we will assume that |α| � 1; then the blade
is given by y = h(x) for 0 ≤ x ≤ L, where

h(x) = hp + α(x − xp). (1)

Also we let h0 = h(0) and h1 = h(L), so that

h0 = hp − αxp, h1 = hp + α(L − xp), α = h1 − h0

L
. (2)

For steady flow the blade is in equilibrium, subject to forces due to the fluid, the pivot, and (in general) the
walls y = 0 and y = H of the channel.

In this section we consider the case when the ends of the blade are not in contact with the walls of
the channel, so that 0< h0, h1<H. The alternative situation in which one of the ends of the blade makes
contact with a wall of the channel will be considered in Sect. 3.

We denote the velocities, pressures, volume fluxes (per unit length in the axial direction) and stream
functions by uk i + vk j , pk, Qk and ψk, where k = 1 denotes values in 0 ≤ x ≤ L, 0 ≤ y ≤ h (that is, the
region “below” the blade, termed “region 1”), k = 2 denotes values in 0 ≤ x ≤ L, h ≤ y ≤ H (that is, the
region “above” the blade, termed “region 2”), and k = 3 denotes values in L ≤ x ≤ L + �, 0 ≤ y ≤ H
(termed “region 3”). The lubrication approximation1 gives

µ
∂2uk

∂y2 = ∂pk

∂x
,

∂pk

∂y
= 0,

∂uk

∂x
+ ∂vk

∂y
= 0 (3)

for k = 1, 2, 3, to be solved subject to the no-slip conditions

u1 = U on y = 0, u1 = 0 on y = h−,
u2 = 0 on y = h+, u2 = 0 on y = H

(4)

in 0 ≤ x ≤ L, and

u3 = U on y = 0, u3 = 0 on y = H (5)

in L ≤ x ≤ L + �.

2.2 Non-dimensionalisation

Before proceeding further it is convenient to non-dimensionalise the problem. Several (equally sensible)
choices of non-dimensionalisation are available; we choose

x = Lx∗, y = hpy∗, xp = Lx∗
p, � = L�∗, α = hp

L
α∗,

h = hph∗, H = hpH∗, h0 = hph∗
0, h1 = hph∗

1,

uk = Uu∗
k, pk = µUL

h 2
p

p∗
k, Qk = UhpQ∗

k, ψk = Uhpψ
∗
k

(6)

for k = 1, 2, 3, and immediately drop the superscript stars for convenience. Henceforth all quantities will
be non-dimensional, unless it is stated otherwise. In particular, the blade now occupies 0 ≤ x ≤ 1, and (1)
becomes

h = 1 + α(x − xp), (7)

1 We shall neglect the small O(H/L) regions of non-uniformity at the ends of the blades where the lubrication equations
(3) are invalid; thus, our solutions will, in general, be discontinuous at x = 0 and x = L, just as the corresponding classical
solutions for lubrication flow in a step bearing are discontinuous at the step. The (small) corrections associated with these
non-uniformities could, in principle, be determined if desired.
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where from (2)

h0 = 1 − αxp, h1 = 1 + α(1 − xp), α = h1 − h0, (8)

where 0 ≤ xp ≤ 1, 0 < h0, h1 < H and H > 1.

2.3 Solution for the flow

Solving (3) for uk for k = 1, 2, 3 subject to (4) and (5) yields

u1= − p1x

2
y(h − y)+ 1 − y

h
, (9)

u2= − p2x

2
(H − y)(y − h), (10)

u3= − p3x

2
y(H − y)+ 1 − y

H
, (11)

and hence the volume fluxes (per unit length in the axial direction) in the three regions are given by

Q1 =
∫ h

0
u1 dy = −h3p1x

12
+ h

2
, (12)

Q2 =
∫ H

h
u2 dy = − (H − h)3p2x

12
, (13)

Q3 =
∫ H

0
u3 dy =−H3p3x

12
+ H

2
, (14)

each of which is a constant (unknown as yet). Therefore

p1x = 6
h2 − 12Q1

h3 , p2x = − 12Q2

(H − h)3
, p3x = 6

H2 − 12Q3

H3 (15)

(and we note that p3x is a constant, but that p1x and p2x vary with x, in general). From (9)–(11) and (15)
we have

u1 = [6Q1y + h(h − 3y)](h − y)
h3 , (16)

u2 = 6Q2(H − y)(y − h)
(H − h)3

, (17)

u3 = [6Q3y + H(H − 3y)](H − y)
H3 , (18)

and the stream functions ψk for k = 1, 2, 3, satisfying
∂ψ1

∂y
= u1,

∂ψ2

∂y
= u2, ψ1 = 0 on y = 0, ψ2 = Q1 on y = h+ (19)

in 0 ≤ x ≤ 1 and
∂ψ3

∂y
= u3, ψ3 = 0 on y = 0 (20)

in 1 ≤ x ≤ 1 + �, are given by

ψ1 = Q1y2(3h − 2y)+ hy(h − y)2

h3 , (21)

ψ2 =Q1 + Q2(y − h)2(3H − h − 2y)
(H − h)3

, (22)

ψ3 = Q3y2(3H − 2y)+ Hy(H − y)2

H3 . (23)
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By global mass conservation we have

Q1 + Q2 = Q3, (24)

consistent with the fact that the wall y = H comprises the streamline ψ2 = Q1 + Q2 in 0 ≤ x ≤ 1 and the
streamline ψ3 = Q3 in 1 ≤ x ≤ 1 + �.

From (3) the pressure in each region is independent of y. Assuming that pressure is continuous at the
ends of the blade, so that

p1(1) = p2(1) = p3(1) (= pL, say) (25)

and

p1(0) = p2(0) = p3(1 + �) (= p0, say) (26)

(where the periodicity of the array has been used), we have from (15) and (25)

p1 = 6
α

(
1
h1

− 1
h

)
− 6Q1

α

(
1

h 2
1

− 1
h2

)
+ pL, (27)

p2 = 6Q2

α

[
1

(H − h1)
2 − 1

(H − h)2

]
+ pL, (28)

p3 = 6(H − 2Q3)

H3 (x − 1)+ pL. (29)

Setting x = 0 in (27)–(28) and x = 1 + � in (29), and using (26), we obtain three representations of
p0 − pL:

p0 − pL = 6
[
Q1(h0 + h1)− h0h1

]
h2

0h2
1

, (30)

p0 − pL = 6Q2(2H − h0 − h1)

(H − h0)2(H − h1)
2 , (31)

p0 − pL = 6�(H − 2Q3)

H3 . (32)

Expressions for the Qk (k = 1, 2, 3) and p0 − pL obtained by solving (24) and (30)–(32) are given in
Eqs. 112–115 in the Appendix; from these it may be shown that Qk ≥ 0, as expected.

2.4 Moment of the forces on the blade

The moment of the forces (per unit length in the axial direction) on the blade about the pivot due to the
pressure (non-dimensionalised with µUL3/h2

p) is of the form M = Mk, where

M =
∫ 1

0
(x − xp)(p1 − p2)dx. (33)

For equilibrium of the blade we require M = 0, which leads to a lengthy equation, given as Eq. 116 in the
Appendix.

2.5 Transcendental equation for α

Elimination of Q1, Q2 and Q3 between (112)–(116) leads to a lengthy algebraic transcendental equation
of the form

F(α, xp, H, �) = 0 (34)
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Fig. 3 Sketch of the “allowed” region in the (xp,α)-plane determined by (36) in which solutions α = α(xp, H, �) of Eq. 34
may lie

(omitted for brevity). This is the key result determining α when xp, H and � are prescribed; then, with α
known, the complete solution (h0, h1, Qk, uk, pk and ψk for k = 1, 2, 3) is determined. For all xp, H and �
Eq. 34 has the trivial solution α = 0, corresponding to the blade being parallel to the walls, and therefore
not acting as a scraper. We shall be concerned with the more interesting (non-trivial) solutions α of (34),
which are of the general form

α = α(xp, H, �). (35)

We note that if (35) is expressed in dimensional variables then it shows, rather unexpectedly, that α is
independent of µ and U, and indeed is independent even of the sign of U.

In the case � = 0, region 3 is absent, Q1 = h0h1/(h0 +h1), Q2 = 0, and p0 = pL. Furthermore, in this case
α is independent of H, because the fluid in region 2 is “shielded” from the moving boundary y = 0 by the
blade y = h, and therefore plays no dynamical part—so the height of region 2 is irrelevant in determining
α.

2.6 Solutions for α

The geometrical restrictions h0 > 0, h0 < H, h1 > 0 and h1 < H mean, respectively, that α < α1(xp),
α > α2(xp, H), α > α3(xp) and α < α4(xp, H), where

α1 = 1
xp

, α2 = − H − 1
xp

, α3 = − 1
1 − xp

, α4 = H − 1
1 − xp

. (36)

The general form of the region in the (xp,α)-plane bounded by the curves (36) is sketched in Fig. 3; the
solution (35) can be physically meaningful only if it lies in this “allowed” region. As Fig. 3 shows, the
curves α = α1 and α = α4 intersect at (xp,α) = (1/H, H), and the curves α = α2 and α = α3 intersect at
(xp,α) = (1 − 1/H, −H).

Any solution α of (34) is an odd function of xp − 1
2 , and so solution curves in the (xp,α)-plane are

skew-symmetric with respect to the point (xp,α) = ( 1
2 , 0). In particular, non-trivial solutions satisfy

α = C
(

xp − 1
2

)
+ O

(
xp − 1

2

)3
as xp → 1

2 , (37)
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Fig. 4 Plots of the
solutions α of Eq. 34 as
functions of xp in the
cases (a) H = 3

2 , (b)
H = 2, and (c) H = 3, for
� = 0, 0.1, 0.25, 0.5, 1, 2, 4,
10, ∞ in each case

0.2 0.4 0.6 0.8

−1.5

−1

−0.5

0.5

1

1.5

xp

l= 8

α

l=0

0.2 0.4 0.6 0.8

−2

−1.5

−1

−0.5

0.5

1

1.5

2

l= 8

xp

l=0

α

0.2 0.4 0.6 0.8

–3

–2

–1

1

2

3

xp

l= 8

α

l=0

(a)

(b)

(c)

where

C = − 10(H − 1)[(1 + �)H2 − 3�H + 6�]
(1 + �)H3 − (1 + 4�)H2 + 8�H − 7�

. (38)

For future reference we note that C, the slope of this solution at xp = 1
2 , is positive for 1 < H < H0,

negative for H > H0, and infinite when H = H0, where H0 = H0(�) is the (unique) real positive zero of
(1 + �)H3 − (1 + 4�)H2 + 8�H − 7�; this zero satisfies 1 < H0 < Hc, where Hc � 1.7152 is the unique
real positive zero of H3 − 4H2 + 8H − 7. Correspondingly, if H ≥ Hc then C is negative for any � > 0,
whereas if 1 < H < Hc then C is negative if � < �0, infinite if � = �0, and positive if � > �0, where
�0(H) = H2(1 − H)/(H3 − 4H2 + 8H − 7). In the special case � = 0 we have C = −10, independent of H.

Figure 4 shows the solutions α of Eq. 34 plotted as functions of xp for several values of � in each of the
cases H = 3

2 , 2, 3; the bounding curves (36) (which depend on H but not �) are also shown in each case.
The solution curves in Fig. 4 connect the bounding curves α = α2 (h0 = H) and α = α4 (h1 = H); however,
despite appearances to the contrary in the case � = ∞ in Fig. 4(c), they do not in general intersect the
bounding curves α = α1 (h0 = 0) and α = α3 (h1 = 0), consistent with the fact that contact between the
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Fig. 5 Sketch of the forms of the solution curve for � = ∞ in the upper half of the (xp,α)-plane for different values of H:
(a) 1 < H < Hc, (b) H = Hc � 1.7152, (c) Hc < H < 2, (d) H = 2, (e) 2 < H < H′

c, (f) H = H′
c � 2.4032, and (g) H > H′

c.
The dots indicate points where dα/dxp = ∞
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blade and the moving wall y = 0 (but not the stationary wall y = H) would lead to force singularities (see
Sect. 3).

As Fig. 4 shows, it is found that the solution (35) exists only for xp lying in some interval xp,min ≤ xp ≤
xp,max around xp = 1

2 , where xp,min and xp,max (= 1−xp,min) depend on the values of H and �. In Fig. 4(c) the
solution α is determined uniquely by xp on each solution curve (that is, for each �), whereas in Fig. 4(a,b)
some of the solution curves are “sigmoidal”, and there can be more than one solution α for a given value
of xp. This illustrates a general pattern, which we now describe.

As Fig. 4 also shows, for each H all the (non-trivial) solution curves lie between the one for � = 0
(the leftmost one in α > 0) and the one for � = ∞ (the rightmost one in α > 0). For the case � = 0 the
solution curve is independent of H, and α is a monotonically decreasing function of xp, and so is determined
uniquely by xp. On the other hand, the character of the solution curve for the case � = ∞ changes with H.
Figure 5 shows a sketch of the forms of the solution curve for � = ∞. Specifically, for 1 < H < Hc (where
Hc � 1.7152 is the critical value of H discussed above) the solution α is a monotonically increasing function
of xp; for H = Hc the solution curve has infinite slope dα/dxp at xp = 1

2 ; for Hc < H < 2 there are two
points on the solution curve where the slope is infinite, and there are multiple solutions α for some xp;
for H = 2 the solution curve has infinite slope where it meets the bounding curves (36), at the points
( 1

2 , ±2); for 2 < H < H′
c � 2.4032 there are four points where the solution curve has infinite slope; for

H = H′
c these points coalesce pairwise, giving only two points where the slope is infinite; and for H > H′

c
the solution α is a monotonically decreasing function of xp. Thus, for � = ∞, there can be (depending on
the value of H) up to three non-trivial solutions α for a given xp in xp,min ≤ xp ≤ xp,max, that is, there can
be up to three equilibrium blade positions, each giving rise to a different flow pattern; a similar statement
can be made in cases when � is finite but sufficiently large.

Figure 6 shows xp,min and xp,max plotted as functions of H for various values of �, and as functions of �
for various values of H. When the solution α is a monotonic function of xp, the values of xp,min and xp,max
are determined by the intersections of the solution curve with the bounding curves α = α2 and α = α4;
these cases are shown as thin curves in Fig. 6. When the solution α is a multivalued function of xp, the
values of xp,min and xp,max are determined as positions xp where dα/dxp = ∞; these cases are shown as
thick curves in Fig. 6.

2.7 Qualitative features of the flow

Armed with the solution given above we can now describe all of the qualitative features of the flow.
Figures 7 and 8 show the fluxes Q1 and Q2 plotted as functions of xp for H = 3

2 and 3, respectively, for
several values of � in each case; the flux Q3 (not shown for brevity) is then given by (31). Cases in which
the Qk are multivalued as functions of xp correspond to cases in which the xp–α relation is multivalued.

In region 3 the flow is rectilinear, with streamlines parallel to the channel walls. Equation 31 shows that
p0 > pL, so that Q3 <

1
2 H and p3x > 0 (that is, the pressure gradient is always adverse) and so backflow

may occur. Specifically, from (18) the position y = y03 
= H where u3 = 0 is given by

y03 = H2

3(H − 2Q3)
= constant, (39)

and the position y = ym3 where u3y = 0 is given by

ym3 = H(2H − 3Q3)

3(H − 2Q3)
= constant; (40)

thus 0 < y03 < H and 0 < ym3 < H (that is, there is backflow near the upper wall y = H in region 3)
whenever Q3 <

1
3 H.
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Fig. 6 Plots of xp,min and
xp,max (a) as functions of
H for � = 0, 0.1, 0.25, 0.5,
1, 2, 4, 10, ∞, and (b) as
functions of � for H = 1.1,
1.5, 2, 3, 6. The thin curves
correspond to cases where
an end of the blade is in
contact with the upper
wall y = H of the channel,
so that α = α2(xp) or
α = α4(xp); the thick
curves correspond to
cases where the minimum
and maximum values of
xp occur with the blade
away from the channel
walls
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In region 1 the pressure gradient p1x may change sign, and backflow may again occur. Specifically, u1 = 0
not only on the blade y = h but also on the curve y = y01(x), where

y01 = h2

3(h − 2Q1)
, (41)

in the region where h ≥ 3Q1; such a region exists if h0, h1, Q1 and α are such that h0 > 3Q1 (if α < 0) or
h1 > 3Q1 (if α > 0). In that case the curve (41) meets the blade y = h at the point where h = 3Q1, which
is a separation point; the separating streamline y = ys(x) is given by ψ1 = Q1, leading to

ys = Q1h
h − 2Q1

(<y01). (42)

Also the curve y = ym1(x) where u1y = 0 is given by

ym1 = h(2h − 3Q1)

3(h − 2Q1)
. (43)

Since Q2 ≥ 0, Eqs. 15 and 17 show that p2x ≤ 0 (that is, the pressure gradient is always favourable), and
u2 (which is symmetric about y = 1

2 (h + H)) satisfies u2 ≥ 0 for all x, meaning that backflow never occurs
in region 2.

Figures 9–11 show, for various values of xp, H and �, plots of the pressures p1 − pL and p2 − pL and the
streamline patterns of the associated flows, together with examples of velocity profiles at various stations in
regions 1 and 2. In particular, Fig. 9 shows examples of the curves y = y01 and y = ys given by (41) and (42),
respectively. Since the pressure p3 − pL merely increases linearly with x across region 3 in accordance with
(29) and the flow in region 3 is rectilinear, the corresponding plots in this region are omitted for brevity.
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Fig. 7 Plots of the fluxes (a) Q1 and (b) Q2 as functions of
xp in the case H = 3

2 , for � = 0, 0.1, 0.25, 0.5, 1, 2, 4, 10,
∞ (except that for the sake of clarity the curve Q2 = 0 for
� = 0 is not shown)
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Fig. 8 As in Fig. 7, but with H = 3 and (a) � = 0, 0.1,
0.25, 0.5, 1, 2, 4, 10, ∞, (b) � = 0.1, 0.25, 0.5, 1, 2, 4, 10,
102, 103, ∞

Figure 9 shows a case in which the pressure gradient p1x is adverse near the trailing edge of the blade,
so much so that there is backflow in region 1 there; similarly Fig. 11 shows a case with backflow near the
leading edge in region 1, whereas Fig. 10 shows a case with no backflow. Also in each case it may be seen
that, if the gap between the blade and the moving wall y = 0 is sufficiently narrow, the maximum fluid
velocity in region 1 can exceed the velocity of the moving wall.

The examples shown in Figs. 9 and 10 were also chosen to demonstrate that two very different solutions
are possible with the same values of the prescribed parameters, namely xp = 0.49, H = 1.7 and � = 2. With
these parameter values the solution curve in the (xp,α)-plane is somewhat like that sketched in Fig. 5(c),
and Eq. 34 has two solutions α; Fig. 9 is plotted for the solution α = 1.25322, whereas Fig. 10 is plotted for
the solution α = 0.432872.

Finally, we note that parabolic velocity profiles of the type (16)–(18), shown in Figs. 9–11, are in broad
agreement with experimental results obtained by MRI on an “idealised” SSHE geometry [5].

2.8 Forces on the blade and on the walls

The drag Fx and lift Fy on the blade, that is, the forces (per unit length in the axial direction) in the x- and
y-directions acting on it due to the fluid (non-dimensionalised with µUL/hp and µUL2/h2

p, respectively),
are given by
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Fig. 9 Plots of (a) the pressures p1 − pL and p2 − pL as
functions of x, (b) corresponding streamline patterns, and
(c) velocity profiles at some stations x in regions 1 and 2, in
the case H = 1.7, � = 2, xp = 0.49 and α = 1.25322. In (b)
the dot denotes the pivot position
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Fig. 10 As in Fig. 9, but with H = 1.7, � = 2, xp = 0.49
and α = 0.432872

Fx = −
∫ 1

0

(
∂u1

∂y
− ∂u2

∂y

)
y=h

dx − α

∫ 1

0
(p1 − p2)dx (44)

and

Fy =
∫ 1

0
(p1 − p2)dx, (45)
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which lead to

Fx = 6Q1

h2
1

+ 6Q2

(H − h1)
2 − 6

h1
+ 4
α

log
h1

h0
(46)

and

Fy = 6Q1

h0h2
1

− 6Q2

(H − h0)(H − h1)
2 + 6

αh1
− 6
α2 log

h1

h0
. (47)

The force (per unit length in the axial direction) in the x-direction on the portion 0 ≤ x ≤ 1 + � of the
lower wall y = 0 due to the fluid (also non-dimensionalised with µUL/hp) is

F0 =
∫ 1

0

∂u1

∂y

∣∣∣∣
y=0

dx +
∫ 1+�

1

∂u3

∂y

∣∣∣∣
y=0

dx, (48)

which leads to

F0 = 6Q1

h0h1
− 4
α

log
h1

h0
+ 2�(3Q3 − 2H)

H2 , (49)

and the force (per unit length in the axial direction) in the x-direction on the portion 0 ≤ x ≤ 1 + � of the
upper wall y = H due to the fluid (also non-dimensionalised with µUL/hp) is

FH = −
∫ 1

0

∂u2

∂y

∣∣∣∣
y=H

dx −
∫ 1+�

1

∂u3

∂y

∣∣∣∣
y=H

dx, (50)

which leads to

FH = 6Q2

(H − h0)(H − h1)
+ 2�(3Q3 − H)

H2 . (51)

As a check on the correctness of these expressions we note that the total force (per unit length in the axial
direction) in the x-direction acting on the fluid in 0 ≤ x ≤ 1 + �, 0 ≤ y ≤ H, namely −Fx − F0 − FH , is
identically zero, as it should be.

Figure 12 shows the force F0 plotted as a function of xp for H = 3
2 and various values of �, and Fig. 13

shows F0 plotted as a function of xp for � = 100 and various values of H. (The corresponding plots of the
forces Fx, Fy and FH are omitted for brevity.) Each of the plots of F0 is symmetric about a maximum at
xp = 1

2 , and the numerical results indicate that, in general, the larger the value of �, the larger |F0| is.
The pivot must exert forces −Fx and −Fy on the blade in order to maintain its equilibrium; similarly,

forces −F0 and −FH must be exerted on the walls y = 0 and y = H, respectively, to maintain the flow.
Dimensional estimates of the torque and power (per unit length in the axial direction) required to turn
the rotor of the SSHE are therefore provided by −NF0R1 and −NF0U, respectively, where again R1 is the
radius of the rotor and N = 2πR1/(L + �) is the number of blades.

3 Contact between the blade and a channel wall

As described in Sect. 2.6, Eq. 34 (which determines the possible equilibrium positions of a blade that is not
in contact with a wall of the channel) has non-trivial solutions α only when xp is sufficiently close to 1

2 . In
practice, however, the pivot position of a typical SSHE blade is near the right-hand end of the blade (so
that xp � 1), and so Eq. 34 has no solution, that is, there is no equilibrium position of the type considered
available for the blade. We conclude that in such a case one of the ends of the blade makes contact with
a wall of the channel. This is exactly what is wanted in practice, but it means that we must modify our
analysis leading to (34) to allow for blade contact.
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3.1 A Newtonian fluid with no slip

Suppose that the blade touches the moving wall y = 0 at the left-hand end x = 0, so that h0 = 0, and as
a consequence Q1 = 0 and Q2 = Q3 = Q, say. The blade could alternatively contact the walls at x = 0,
y = H, at x = 1, y = 0, or at x = 1, y = H, but these cases are of less relevance to a real SSHE, and so we
will not consider them, except to say that the solution for a case when the blade just touches the stationary
wall y = H may be obtained simply by taking the appropriate (regular) limit of the results in Sect. 2.

We again take the blade to be given by y = h(x), but now with

h(x) = αx(α > 0), (52)

and with α regarded as prescribed. Equations 3–32 again hold (with h0 = 0, Q1 = 0, and h1 = α < H),
except that (26) must be replaced by

p2(0) = p3(1 + �), (= p0, say), (53)

and the result (30) must be dropped. Moreover the moment M in (33) can no longer be prescribed (and,
in particular, will no longer vanish, in general).

Equations 31 and 32 lead to

Q = α�H(H − α)2

(2α�− H)(H − α)2 + H3 (54)

and

p0 − pL = 6α�(2H − α)

H[(2α�− H)(H − α)2 + H3] . (55)

The velocities and pressures are then given by (16)–(18) and (27)–(29), respectively. Figure 14 shows an
example of the pressures p1 −pL and p2 −pL plotted as functions of x. We note from (15) that p1x > 0, and
from (54) that Q > 0 and Q < 1

2 H, so that p2x < 0 and p3x > 0. Equation 16 shows that there is backflow
in the region 0 ≤ y ≤ h under the blade, with u1y = 0 on y = ym1 = 2

3 h and u1 = 0 on y = y01 = 1
3 h. Also

y03 and ym3 in (39) and (40) are given by

y03 = H
3

+ 2�(H − α)2

3(2H − α)
>

H
3

(56)

and

ym3 = 2H
3

+ �(H − α)2

3(2H − α)
>

2H
3

, (57)

so that y03 < H and ym3 < H (that is, there is backflow near y = H in region 3) only for sufficiently small �.
However, this solution has a major shortcoming: Eqs. 16 and 27 show that in the limit x → 0 (so that

h = αx → 0)

∂u1

∂y

∣∣∣∣
y=0

= − 4
αx

→ −∞,
∂u1

∂y

∣∣∣∣
y=h

= 2
αx

→ ∞, p1 ∼ − 6
α2x

→ −∞ (58)

(the latter being evident in Fig. 14), the forces Fx, Fy and F0 are infinite, and there is an infinite moment M
on the blade about a pivot at x = xp tending to keep it in contact with the wall.

In reality the stresses near the contact point x = 0, y = 0 may become large, but will, of course, remain
finite; the singularities predicted above are a consequence of the simplifying assumptions concerning the
two-dimensional nature of the problem, and the interaction between, and the nature of, the fluid, the blade
and the moving wall.

Various alternative modelling assumptions may be invoked to alleviate these singularities; in particular,
as we shall show, allowing non-Newtonian fluid behaviour, slip at solid boundaries, or cavitation in regions



J Eng Math (2007) 57:381–405 397

of low pressure can achieve this. Which (if any) of these effects is most significant in practice remains an
interesting open question. Precedents for this sort of approach were established by, for example, Silliman
and Scriven [17], who showed that slip can alleviate the stress singularity occurring in viscous flow at a
channel exit, and Weidner and Schwartz [18], who showed that non-Newtonian (power-law) behaviour can
alleviate the stress singularity at a three-phase contact line moving over a solid substrate; it is well known
that slip at the substrate can have a similar effect.

3.2 A power-law fluid

Consider an incompressible shear-thinning power-law fluid, with dimensional constitutive equation

σ = 2µ(q)e, µ(q) = µ0qn−1, q = (2 tr (e2))1/2, (59)

where σ is the partial-stress tensor, e is the rate-of-strain tensor, q is the local shear rate, and µ0 and n
(< 1) are constants. Non-dimensionalising as before using µ0(U/hp)

n−1 in place of µ for such a fluid the
lubrication approximation gives (see, for example, [19,20])

∂

∂y

(
qn−1

k
∂uk

∂y

)
= ∂pk

∂x
,

∂pk

∂y
= 0,

∂uk

∂x
+ ∂vk

∂y
= 0, qk =

∣∣∣∣∂uk

∂y

∣∣∣∣ (60)

for k = 1, 2, 3, to be solved subject to (4), (5), (25) and (53). Again we take h to have the form (52), and
so again we have Q1 = 0 and Q2 = Q3 = Q.

Solving (60) is rather more tedious than solving (3), because more care must be taken with the signs of
velocity gradients in different parts of the flow domain. For example, to determine the solution in region 1
we recall that y = ym1(x) is the curve on which u1y = 0 (with 0 < ym1 < h, since Q1 = 0), so that u1y < 0
in y < ym1 and u1y > 0 in y > ym1. We then solve for u1 in 0 ≤ y ≤ ym1 and ym1 ≤ y ≤ h separately, and
equate expressions for u1 at y = ym1 to obtain one relation between ym1 and the pressure gradient p1x. A
second relation between ym1 and p1x is found by using the fact that Q1 = 0. From these two relations it is
found that the curve y = ym1(x) is, in fact, a straight line y = bαx, where the constant b ( 1

2 < b < 1) is a
solution of the equation

(n + 1 + nb)(1 − b)
n+1

n = nb
2n+1

n . (61)

Also

u1 = |y − ym1| n+1
n − (h − ym1)

n+1
n

y
n+1

n
m1 − (h − ym1)

n+1
n

, (62)

or equivalently

u1 =
(

1 + nb
n + 1

) ∣∣∣ y
bh

− 1
∣∣∣

n+1
n − nb

n + 1
; (63)

the curve y = y01 (<ym1) on which u1 = 0 is found to satisfy

ym1 = 1
2 (h + y01). (64)

The pressure p1 is given by

p1 = − bn

nα(1 − b)n+1

(
1

hn − 1
αn

)
+ pL. (65)

A similar procedure for region 2 gives

u2 = 2n + 1
n + 1

Q
H − h

(
1 −

∣∣∣∣h + H − 2y
H − h

∣∣∣∣
n+1

n
)

(66)
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(symmetric about y = 1
2 (h + H)),

p2 = 1
nα

(
2(2n + 1)Q

n

)n [
1

(H − α)2n − 1
(H − h)2n

]
+ pL (67)

and

p0 − pL = 1
nα

(
2(2n + 1)Q

n

)n [
1

(H − α)2n − 1
H2n

]
, (68)

with the flux Q an unknown constant.
The procedure for region 3 is more lengthy, because cases with and without backflow must be treated

separately; it is found eventually that

u3 = |y − ym3| n+1
n − |H − ym3| n+1

n

y
n+1

n
m3 − |H − ym3| n+1

n

, (69)

p3 =
(

n + 1
n

)n 1[
y

n+1
n

m3 − |H − ym3| n+1
n

]n (x − 1)+ pL (70)

and

p0 − pL =
(

n + 1
n

)n
�[

y
n+1

n
m3 − |H − ym3| n+1

n

]n , (71)

where y = ym3 is again the position at which u3y = 0. The flux Q satisfies

Q = ny
2n+1

n
m3 − [

(n + 1)H + nym3
] |H − ym3| n+1

n

(2n + 1)
[

y
n+1

n
m3 − |H − ym3| n+1

n

] . (72)

Finally, elimination of Q and p0 − pL between (68), (71) and (72) leads to an equation determining ym3:

ny
2n+1

n
m3 − [

(n + 1)H + nym3
] |H − ym3| n+1

n = (n + 1)(nα�)
1
n

2
[
(H − α)−2n − H−2n

] 1
n

(73)

(which shows that ym3 is a constant, independent of x). It may be shown that for sufficiently small � Eq. 73
has a solution ym3 satisfying 1

2 H < ym3 < H, so there is backflow near y = H in this case.
As a check on these results we note that in the case n = 1 the solution of (61) is b = 2

3 (so that ym1 = 2
3 h),

and the solution ym3 of (73) is again (57); thus when n = 1 the results (62)–(72) for the velocities, pressures
and fluxes reduce to those for a Newtonian fluid.

From (62) and (65) we find that the stresses in region 1 are O(x−n) as x → 0, and so are again singular;
however, the singularities in this case are integrable for n < 1. Essentially the large shear rates near the
contact point lead to a low viscosity there, and hence to stresses that, though singular, lead to finite forces
and moment; specifically we find from (44), (45), (48) and (50) that the forces (per unit length in the axial
direction) Fx, Fy, F0 and FH take the forms

Fx = α−n

1 − n

(
b

1 − b

)n+1

+ 1
nα

(
2(1 + 2n)Q

n

)n
[

α

(H − α)2n + (1 − n)
(H − α)1−2n − H1−2n

1 − 2n

]
, (74)

Fy = − α−(1+n)

(1 − n)b

(
b

1 − b

)n+1

− 1
nα2

(
2(1 + 2n)Q

n

)n
[

α

(H − α)2n + (H − α)1−2n − H1−2n

1 − 2n

]
, (75)
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F0 = − α−n

1 − n

(
b

1 − b

)n+1

−
(

n + 1
n

)n
�ym3[

y
n+1

n
m3 − |H − ym3| n+1

n

]n , (76)

FH = − 1
α

(
2(1 + 2n)Q

n

)n
(H − α)1−2n − H1−2n

1 − 2n
−

(
n + 1

n

)n
�(H − ym3)[

y
n+1

n
m3 − |H − ym3| n+1

n

]n (77)

(again satisfying Fx + F0 + FH = 0), and from (33) the moment of forces on the blade about a pivot at
x = xp, y = 1 = αxp is

M = 1
2nα3

[
nα1−n[2(2 − n)− (1 − n)α]

b(1 − n)(2 − n)

(
b

1 − b

)n+1

+
(

2(1 + 2n)Q
n

)n

×
{
α(2 − α)

(H − α)2n − (H − α)1−2n[2(n − 1)+ H + (1 − 2n)α] − H1−2n[2(n − 1)+ H]
(1 − n)(1 − 2n)

}]
. (78)

These quantities are finite for n < 1, but all except FH are singular in the Newtonian limit n → 1−.

3.3 A Newtonian fluid with slip at boundaries

We now consider the case of a Newtonian fluid that may slip along the lower wall y = 0 and the lower face
y = h− of the blade, with relative velocity proportional to the local shear rate (see, for example, [21,22]);
for simplicity we shall continue to assume that there is no slip at the upper surface y = h+ of the blade and
at the upper wall y = H (though the analysis could be extended to include slip on these boundaries too, if
desired).

Again we take h to have the form (52), and so again we have Q1 = 0 and Q2 = Q3 = Q. The lubrication
equations (3) must now be solved subject to (25), (53) and, in place of (4) and (5),
u1 − 1 = βu1y on y = 0, u1 = −βu1y on y = h−,
u2 = 0 on y = h+, u2 = 0 on y = H

(79)

in 0 ≤ x ≤ 1, and

u3 − 1 = βu3y on y = 0, u3 = 0 on y = H (80)

in 1 ≤ x ≤ 1 + �, where β (>0) is a (small) non-dimensional slip length, taken to be the same for the
two boundaries y = 0 and y = h−. Although a slip length may in general be variable, here we shall for
simplicity take β to be a constant.

These equations are solved in an analogous way to those in Sect. 2. In particular, it is found that

u1 = 3(h + 2β)y2 − 4h(h + 3β)y + h2(h + 4β)
h(h + 2β)(h + 6β)

, (81)

u2 = 6Q(H − y)(y − h)
(H − h)3

, (82)

u3 = [6Q{(H + β)y + Hβ} + H2(H − 3y)](H − y)
H3(H + 4β)

, (83)

and

p1 = 1
αβ

log
h(α + 6β)
α(h + 6β)

+ pL, (84)

p2 = 6Q
α

[
1

(H − α)2
− 1
(H − h)2

]
+ pL, (85)

p3 = 6[H2 − 2Q(H + β)]
H3(H + 4β)

(x − 1)+ pL. (86)
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Setting x = 0 in (85) and x = 1 + � in (86), and using (53), we obtain

p0 − pL = 6Q(2H − α)

(H − α)2H2 = 6�[H2 − 2Q(H + β)]
H3(H + 4β)

, (87)

which lead to

Q = �H2(H − α)2

2�(H − α)2(H + β)+ H(2H − α)(H + 4β)
(88)

and

p0 − pL = 6�(2H − α)

2�(H − α)2(H + β)+ H(2H − α)(H + 4β)
. (89)

Equation 81 shows that there is backflow in the region 0 ≤ y ≤ h under the blade, with u1y = 0 on
y = ym1 and u1 = 0 on y = y01, where

ym1 = 2h(h + 3β)
3(h + 2β)

, y01 = h[2(h + 3β)− (h2 + 6hβ + 12β2)1/2]
3(h + 2β)

. (90)

The slip velocities on y = 0 and y = h− are

u1|y=0 = 1 − 4β(h + 3β)
(h + 2β)(h + 6β)

, u1|y=h− = − 2hβ
(h + 2β)(h + 6β)

, (91)

both of which vanish as the corner at x = 0 is approached. In region 2 the above results depend on the slip
length β only via the value of Q. From (88) we have Q > 0, so that p2x < 0, and Q < H2/(2(H + β)), so
that p3x > 0, as in the no-slip case. The positions y = y03 where u3 = 0 and y = ym3 where u3y = 0 are
again given by (56) and (57), independent of β.

As a check we note that when β = 0 the above results for the velocities, pressures and fluxes reduce to
those in the no-slip case.

In the limit x → 0 the viscous stresses are finite, but p1 is singular:

p1 ∼ 1
αβ

log
(α + 6β)x

6β
→ −∞. (92)

However, this singularity is integrable, and from (44), (45), (48), (50) and (33) we find that

Fx = 6Q
(H − α)2

+ 1
α

log
(α + 2β)(α + 6β)3

432β4 , (93)

Fy = − 6Q
H(H − α)2

− 6
α2 log

α + 6β
6β

, (94)

F0 = − 1
α

log
(α + 2β)(α + 6β)3

432β4 + 2�(3Q − 2H)
H(H + 4β)

, (95)

FH = 6Q
H(H − α)

+ 2�
[
3Q(H + 2β)− H2]

H2(H + 4β)
(96)

(again satisfying Fx + F0 + FH = 0), and

M = 3
α3

[
Q(2H2 − 3Hα + 2α)α

H(H − α)2
+ 2Q log

H − α

H
− α + 2(1 + 3β) log

α + 6β
6β

]
. (97)

These quantities are finite for β > 0, but all except FH are singular in the no-slip limit β → 0.
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3.4 A Newtonian fluid with cavitation

Here we re-consider flow of a Newtonian fluid when there is blade contact at x = 0 (so that h has the
form (52), and Q1 = 0), but now we suppose that cavitation will occur in any region in which the pressure
falls below a critical value p∗ (which may be the vapour pressure of the process material, or the saturation
pressure of any dissolved gases). In practice a SSHE is pressurised (up to, perhaps, 100 bar), and we will
assume that the level of the internal pressure (measured by pL) is sufficiently large that cavitation does not
occur in regions 2 or 3; cavitation thus occurs only in region 1 where the fluid pressure would otherwise
become large and negative in the vicinity of x = 0 as shown in Fig. 14.

Suppose that a cavitation “bubble” occupies the interval 0 ≤ x ≤ x∗ in region 1 (with x∗ unknown as
yet), so that the pressure p1 satisfies the boundary condition2

p1 = p∗ at x = x∗. (98)

In fact, since the cavitation bubble is occupied by vapour (of low viscosity and density, presumably), we
will assume both that the viscous stresses in the bubble may be neglected, and that p1 takes the (uniform)
value p∗ throughout 0 ≤ x ≤ x∗.

Except in the cavitation bubble the solution is exactly as described in Sect. 3.1, and it is found from (27)
(with Q1 = 0) that

x∗ =
[

1 + α2

6
(pL − p∗)

]−1

. (99)

The associated forces and moment are now finite; specifically, with

p1 = p∗,
∂u1

∂y

∣∣∣∣
y=0

= 0,
∂u1

∂y

∣∣∣∣
y=h

= 0 in 0 ≤ x ≤ x∗ (100)

in (44), (45), (48), (50) and (33), we find that FH is as in (51) with h0 = 0, and that

Fx = 6Q
(H − α)2

− 4
α

log x∗, (101)

Fy = − 6Q
H(H − α)2

+ 6
α2 log x∗, (102)

F0 = 4
α

log x∗ + 2�(3Q − 2H)
H2 , (103)

and

M = 3
α3

[
Q(2H2 − 3Hα + 2α)α

H(H − α)2
+ 2Q log

H − α

H
− α(1 − x∗)− 2 log x∗

]
. (104)

These quantities are finite for |p∗| finite, but are singular in the no-cavitation limit p∗ → −∞ (x∗ → 0+).

4 Three-dimensional flow

In a SSHE the process material not only undergoes flow in the transverse section (caused by the rotation of
the rotor), but also is driven longitudinally along the annular gap between stator and rotor by an imposed
axial pressure gradient (including, if the SSHE is mounted vertically, the effect of gravity).

2 Commonly in lubrication analyses with cavitation the relevant flux is unknown a priori, and an additional boundary con-
dition (such as dp1/dx = 0 at x = x∗) is imposed (see, for example, [23, p. 98]). In the present problem the flux is known
(Q1 = 0), and there is no freedom to impose such an additional boundary condition.
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To model this fully three-dimensional flow we consider briefly the effect of allowing flow along the
channel in the z-direction, in addition to the flow in the (x, y)-plane, discussed above. We take the blades
to be very long in the z-direction, and suppose (quite realistically) that the dimensional axial length scale
Lz satisfies Lz � H, so that the longitudinal flow can be assumed to be rectilinear.

We restrict attention to the case of steady flow of a Newtonian fluid satisfying the no-slip condition on
all rigid boundaries. The analysis is valid whether or not the blade makes contact with the channel walls
(though if there is contact with the moving wall then we assume for simplicity that cavitation does not
occur).

Since the longitudinal flow is rectilinear, the flow in the z-direction uncouples from that in the (x, y)-
plane. Thus, with velocities and pressures denoted by uk i + vk j + wk k and Pk for k = 1, 2, 3 (with uk, vk,
wk and Pk functions of x, y and z), we find straightforwardly that

w1 = G
2

y(h − y), w2 = G
2
(H − y)(y − h), w3 = G

2
y(H − y), (105)

Pk = −Gz + pk, (106)

where G = −∂Pk/∂z is the (constant) prescribed axial pressure gradient, and the velocity components
uk = uk(x, y) and vk = vk(x, y) and the pressure contributions pk = pk(x, y) are exactly as given for the
two-dimensional transverse flow described in detail in Sect. 2, so that all the results presented in Sect. 2 go
over to this three-dimensional case. Overall the fluid particles undergo a rather complicated fully three-
dimensional motion down the channel; the earlier streamline plots, for example, are now to be interpreted
as projections of the flow onto the transverse (x, y)-plane.

The volume flux of fluid in the axial direction across the section 0 ≤ x ≤ 1 + �, 0 ≤ y ≤ H (non-
dimensionalised with GLh3

p/µ), namely

Qz =
∫ 1

0

∫ h

0
w1 dy dx +

∫ 1

0

∫ H

h
w2 dy dx +

∫ 1+�

1

∫ H

0
w3 dy dx, (107)

is given by

Qz = GH
24

[
2(h2

0 + h0h1 + h2
1)− 3H(h0 + h1)+ 2H2(1 + �)

]
. (108)

Figure 15 shows the axial flux Qz plotted as a function of xp for H = 3
2 and various values of �, in a case

when the blade is not in contact with the channel walls. In particular, Fig. 15 shows that Qz varies relatively
little with xp in these cases.

In the case of blade contact at x = 0 (so that h0 = 0 and h1 = α) the flux Qz (for given values of G,
H and �) has a maximum value GH3(1 + �)/12 when α = 0, a minimum value GH3(7 + 16�)/192 when
α = 3

4 H, and takes the value GH3(1 + 2�)/24 when α = H.
The forces Fx, Fy, F0 and FH are exactly as given in (46), (47), (49) and (51). The force (per unit length

in the axial direction) in the z-direction on the blade due to the fluid (non-dimensionalised with GLhp) is
given by

Fz = −
∫ 1

0

(
∂w1

∂y
− ∂w2

∂y

)
y=h

dx = GH
2

, (109)

and the forces (per unit length in the axial direction) in the z-direction on the portions 0 ≤ x ≤ 1 + � of
the lower wall y = 0 and the upper wall y = H due to the fluid (also non-dimensionalised with GLhp) are

F̃0 =
∫ 1

0

∂w1

∂y

∣∣∣∣
y=0

dx +
∫ 1+�

1

∂w3

∂y

∣∣∣∣
y=0

dx = G
4

[2H�+ h0 + h1] (110)

and

F̃H = −
∫ 1

0

∂w2

∂y

∣∣∣∣
y=H

dx −
∫ 1+�

1

∂w3

∂y

∣∣∣∣
y=H

dx = G
4

[2H(1 + �)− h0 − h1], (111)
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Fig. 15 Plot of the axial
volume flux Qz given by
(108) as a function of xp in
the case H = 3

2 , for � = 0,
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respectively. As a check we note that the total force (per unit length in the axial direction) in the z-direction
acting on the fluid in 0 ≤ x ≤ 1 + �, 0 ≤ y ≤ H, namely GH(1 + �)− Fz − F̃0 − F̃H , is identically zero, as it
should be. The dimensional power (per unit length in the axial direction) required to drive the axial flow
is simply NGQz.

5 Conclusions

We have presented a simple mathematical model of fluid flow in a common type of SSHE in which the
gaps between the blades and the device walls are narrow, so that a lubrication-theory description of the
flow is valid. Specifically we analysed steady isothermal flow of a Newtonian fluid around a periodic array
of pivoted scraper blades in a channel with one stationary and one moving wall, when there is an applied
pressure gradient in a direction perpendicular to the wall motion. The flow is fully three-dimensional,
but decomposes naturally into a two-dimensional “transverse” flow driven by the boundary motion and a
“longitudinal” pressure-driven flow.

First details of the structure of the transverse flow were considered. The analysis reveals that there is a
range of blade-pivot positions xp,min ≤ xp ≤ xp,max around xp = 1

2 for which the desired contact between
the blade tip and the scraped surface does not occur. Moreover, for such a value of xp there can be as many
as three different possible steady solutions each with different blade angles and flow patterns. The present
calculations also reveal details of the flow structure, including the possible presence of regions of reversed
flow under the blades. In addition predictions for the forces on the blades and the torque on the rotor, as
well as the fluxes of fluid above and below the blades, were determined analytically.

It was shown that locating the pivot sufficiently near the end x = 1 (as is typically done in practice in SSHE
design) will ensure that the blade tip at x = 0 will indeed make the desired contact with the scraped surface.
However, the solution in this case predicts that the forces on the blades are singular and that an infinitely
large torque is required to turn the rotor. These unrealistic predictions indicate that one or more effects
neglected in the simple model become significant in this case. Three possible generalisations of the model
(namely, allowing non-Newtonian power-law fluid behaviour, including slip at the boundaries of region 1,
and allowing for cavitation in regions of very low pressure) were each shown to resolve these singularities.

Lastly the longitudinal flow was considered. Expressions were derived for the axial flux generated by a
given pressure gradient, and for the associated axial forces on the blade and channel walls.

The simple model presented here adds to the quantitative understanding of some of the basic features
of the fluid flow within a SSHE and provides a basis for subsequent studies of more complicated physical
effects. In particular, the present results highlight the importance of positioning the pivot near the right-
hand end of the blade, as well as providing relatively simple analytical expressions for the forces on the
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blades, rotor and stator and the torque on the blades which may help to inform the design process, and so
help to produce improved designs with reduced blade wear and reduced power consumption.

In addition to non-isothermal effects, it would be useful to extend the analysis to investigate other
practically important features neglected in this simple model, including blade wear, the effects of holes in
the blades, and the possibility of unsteady flow.
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Appendix

In this Appendix we state some of the lengthier equations relating to the problem of two-dimensional flow
in a channel with a periodic array of blades, in the general case (discussed in Sect. 2) when the blades are
not in contact with the walls of the channel.

The Qk (k = 1, 2, 3) obtained from (24) and (30)–(32) take the forms

Q1 = h0h1

�

[
H3(2H − h0 − h1)+ �

{
2(H − h0)

2(H − h1)
2 + H(2H − h0 − h1)h0h1

}]
, (112)

Q2 = �

�
(H − h0)

2(H − h1)
2 [

H(h0 + h1)− 2h0h1
]

, (113)

Q3 = H
�

[
H2(2H − h0 − h1)h0h1 + �

{
(h0 + h1)(H − h0)

2(H − h1)
2 + (2H − h0 − h1)h

2
0h2

1

}]
, (114)

where

� = H3(2H − h0 − h1)(h0 + h1)+ 2�
[
(h0 + h1)(H − h0)

2(H − h1)
2 + (2H − h0 − h1)h

2
0h2

1

]
. (115)

Then p0 − pL may be obtained from (32).
The condition that the moment of forces (33) on the blade vanish can be written in several equivalent

forms, including

2
α

log
h1

h0
− α + 2

h1
+

[
2
α

log
h1

h0
− 2α + h0(h0 + h1)

h0h2
1

]
Q1

+
[

2
α

log
H − h1

H − h0
− 2(H − 1)α − (H − h0)(2H − h0 − h1)

(H − h0)(H − h1)
2

]
Q2 = 0. (116)

The algebraic transcendental equation (34) determining α as a function of xp, H and �, from which the
results of Sect. 2 were derived, is obtained by eliminating the Qk from (112)–(116), and using (8).
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